Manufahi Toilets - Quantities of concrete blocks and cement required per toilet.

Number of blocks required:

Standard block size $=400 \times 200 \times 100$

Standard mortar joint $=10 \mathrm{~mm}(+/-3 \mathrm{~mm})$

Pit construction:

Make pit from 14 blocks per course, hence inside circumference $=(400+10) \times 15=6150$
Hence internal diameter $=6150 / 3.146=1955 \mathrm{~mm}$
And outside diameter $=1955+2(100)=2155 \mathrm{~mm}$

Size of slab around pit $=2400 \times 2400$.
Depth of pit $=2000$ below ground level. Finished height is 100 mm above ground level, so total height of blocks is $2100=10$ blocks $\times 210$.

So number of blocks required $=15 \mathbf{x} 10=150$ per pit.

Toilet Block Construction:

Main walls = 30 blocks
Height $2100=10$ blocks high so total $30 \times 10=300$ blocks

Water tanks $6 \times 3=18$ blocks
Shelf = 2 block

Total = $\mathbf{3 2 0}$ blocks.

Total:

Pit: 150
Building: 300
Total 450

Order 500 blocks per toilet to provide allowance
Volume of concrete $=500 \times(.4 \times .2 \times .1)=4 \mathrm{~m} 3$
Weight of blocks: $4 \times 2.4=9.6$ tonnes.

Volume of concrete slab Estimate

Pit base slab

Assume pit is dug 3 m diameter

Area of slab $=3 \times 3 \times 3.146 / 4=7 \mathrm{~m} 2 . \times 0.1=0.7 \mathrm{~m} 3$.
Allow 1 m3 concrete for thickening under wall

Pit top slab

Area $2.4 \times 2.4=5.76 \mathrm{~m} 2$
Less hole Area $=2.155 \times 2.155 \times 3.146 / 4=3.65 \mathrm{~m} 2$

Slab area $=5.76-3.65=2.11 \mathrm{~m} 2$
Thickness $=100 \mathrm{~mm}$ so Volume concrete $=2.11 \times 0.1=0.211 \mathrm{~m} 3$. Allow 0.3 m 3

Building Slab

$3.5 \times 2.1 \times 0.1=0.735$ - allow 1 m 3 to allow for thickening under walls.

Totals:

Pit base $=$	$1 \mathrm{m3}$
Pit lid surround $=$	0.3 m 3
Building $=$	$1.0 \mathrm{m3}$

Total $=\quad 2.3 \mathrm{~m} 3 /$ per toilet
Allow 2.5 m3/toilet

Mix 1:2:4 cement:sand:aggregate

Hence need $294 \times 2.5=735 \mathbf{k g}$ cement. (from on-line calculator)

Mix $=\quad$ Mortar; 1:4 cement:sand
For pit, number of blocks $=150$. Mortar joints on bottom $=150 \times 0.4 \times 0.01=0.6 \mathrm{~m} 3$
For vertical joints, inside $=10 \mathrm{~mm}$, outside $=44 \mathrm{~mm}$, average $=27 \mathrm{~mm}$. Volume $=150 \times 0.21$
$x 0.027=0.85 \mathrm{~m} 3$
Total $=0.6+0.85=1.45 \mathrm{~m} 3$
Building: 300 block so mortar $=300 \times(0.41+0.21) \times 0.01=1.86 \mathrm{m3}$.

Total mortar $=1.45+1.86=3.31 \mathrm{~m} 3$. Say 4 m 3.

Cement required $=4 \times 390=1,560 \mathrm{~kg}$.

So total cement $=735+1560=2295 \mathrm{~kg} . \quad(46 \times 50 \mathrm{~kg}$ bags, say 50 bags (2500kg)

